
www.manaraa.com

ar
X

iv
:n

lin
/0

60
70

20
v1

  [
nl

in
.C

D
] 

 1
1 

Ju
l 2

00
6

Lagrangian particle paths & ortho-normal quaternion frames

J. D. Gibbon1 and D. D. Holm1,2

1 Department of Mathematics, Imperial College London SW7 2AZ, UK

email: j.d.gibbon@ic.ac.uk and d.holm@ic.ac.uk
2Computer and Computational Science,

Los Alamos National Laboratory,

MS D413 Los Alamos, NM 87545, USA

email: dholm@lanl.gov

July 11th, 2006

Abstract

New optical methods now allow experimentalists to track the trajectories of Lagrangian
tracer particles in fluid flows at high Reynolds numbers. Independently, quaternions are used
in the aerospace and computer graphics industries to track the paths of objects undergoing
three-axis rotations. It is shown here that quaternions are a natural way of selecting an
appropriate ortho-normal quaternion-frame (not the Frenet-frame) for a Lagrangian particle
and of obtaining the equations for its dynamics. The method is applicable to a wide range
of Lagrangian flows.

1 Introduction

Hamilton discovered the multiplication rule for quaternions on 16th October, 1843, as a compo-
sition rule for orienting his telescope, which had four cranks. This feature – that multiplication
of quaternions represents compositions of rotations – has made them the technical foundation of
modern inertial guidance systems in the aerospace industry where tracking the paths of moving
rotating satellites and aircraft is of paramount importance (Kuipers 1999). The graphics com-
munity also uses them to control the orientation of tumbling objects in computer animations
because they avoid the difficulties incurred at the north and south poles when Euler angles are
used (Hanson 2006).

Given the utility of quaternions in tracking the paths of rotating objects one might ask
whether they would also be useful in tracking Lagrangian particles in fluid dynamical situa-
tions. Recently by using optical methods developed for tracking particles created in cosmic
ray bursts, experiments in turbulent flows have developed to the stage where the trajectories
of tracer particles can be detected at high Reynolds numbers (Voth et al. 2002); see Figure 1
in [La Porta et al. (2001)]. The usual practice in graphics problems is to consider the Frenet-
frame of a trajectory which consists of the unit tangent vector, a normal and a bi-normal (Hanson
2006). In navigational language, this represents the corkscrew-like pitch, yaw and roll of the
motion. While the Frenet-frame describes the path, it ignores the dynamics that generates the
motion. Here we will discuss another ortho-normal frame associated with the motion of each
Lagrangian particle, designated the quaternion-frame. Quaternion-frames may be envisioned as
moving with the Lagrangian particles, but their evolution derives from the Eulerian equations
of motion.

Suppose w is a contravariant vector quantity attached to a tracer particle following the flow
along characteristic paths dx/dt = u(x, t) of a velocity u. Being contravariant, the components
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of w evolve under the coordinate transformation x(0) → x(t) along the characteristic path by
the change of coordinates rule

w(t) ·
∂

∂x(t)
= w(0) ·

∂

∂x(0)
. (1.1)

That is, the vector field w ·∇ keeps its value (is preserved) along the characteristics of the flow
of the velocity vector u (which is also contravariant). Since it keeps its value, the Lagrangian
rate of change of w · ∇ must vanish, so that

d

dt

(

w(x(t), t) ·
∂

∂x(t)

)

= 0 , along
dx

dt
= u(x, t) . (1.2)

Upon expansion of the derivative, this takes the Eulerian form,

Dw

Dt
− w · ∇u = 0 with

D

Dt
=

∂

∂t
+ u · ∇ . (1.3)

As a physical example of this process, consider the case when w is a stretching line-element
w = ℓ transported passively in the flow of a prescribed velocity u(x, t), as discussed in
[Batchelor (2000)]. As another physical example, w = B may be the frozen-in magnetic field in
the kinematic dynamo equation, which again takes the form in (1.3).

Given (1.2), it follows from Ertel’s Theorem (Ertel 1942) that

D(w · ∇θ)

Dt
= w · ∇

(
Dθ

Dt

)

, (1.4)

for any differentiable function θ(x, t). In particular, we may choose θ = u and identify Du/Dt =
Q(x, t) as the prescribed acceleration. In this case, we find

Dw

Dt
= w · ∇u , (1.5)

and
D2w

Dt2
=

D(w · ∇u)

Dt
= w · ∇

(
Du

Dt

)

=: w · ∇Q , (1.6)

with prescribed flow and acceleration u(x, t) and Q(x, t).

In what follows, we will develop a quaternionic picture of this process of Lagrangian flow
and acceleration. Thus, we consider the abstract Lagrangian flow equation,

Dw

Dt
= a(x, t) , (1.7)

whose Lagrangian acceleration equation is given by

D2w

Dt2
=

Da

Dt
= b(x, t) . (1.8)

So far, these are just kinematic rates of change following the characteristics of the velocity
generating the path x(t) determined from dx/dt = u(x, t).

Section 2 will show that the quartet of vectors (u, w, a, b) determines the quaternion-frame
and its Lagrangian dynamics. Modulo a rotation around w, the quaternion-frame turns out to
be the Frenet-frame attached to lines of constant w. If the particles are not passive tracers but
are fluid parcels, the individual elements in the triad (u, w, a) may not be independent; for
instance, for the three-dimensional incompressible Euler equations in vorticity form, we have
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(u, w, a) ≡ (u, ω, ω · ∇u) with the vorticity ω = curlu and divu = 0. As described in
Ohkitani (1993) – see also Gibbon et al. (2006) for a history – in this case Ertel’s Theorem for
Euler’s fluid equations ensures that b exists and takes the form b = −Pω where P is the Hessian
matrix of spatial derivatives of the pressure. Because ŵ = ω̂ in this case, lines of constant w

are vortex lines. Modulo a rotation around ω̂, the quaternion-frame is then the Frenet-frame for
these vortex lines. Examples such as Euler’s equations for a rotating incompressible fluid, for a
barotropic fluid and for ideal MHD are examples where the above conditions are fulfilled; these
are outlined in Section 3. In some practical situations, however, the vector b may not exist for
every system for every triad (u, w, a). For example no b is known for the Euler equations in
velocity form for which (u, w, a) ≡ (u, u, −∇p).

The quaternion picture: Three-axis rotations lie at the heart of the definition of a quaternion.
In terms of any scalar1 p and any 3-vector q, the quaternion q = [p, q] is defined as (Gothic
fonts denote quaternions)

q = [p, q] = pI −
3∑

i=1

qiσi , (1.9)

where {σ1, σ2, σ3} are the three Pauli spin-matrices and I is the 2×2 unit matrix. The relations
between the Pauli matrices σiσj = −δijI − ǫijkσk then give a non-commutative multiplication
rule

q1 ⊛ q2 = [p1p2 − q1 · q2, p1q2 + p2q1 + q1 × q2] . (1.10)

It can easily be demonstrated that quaternions are associative. As will be recalled in Section 4
the individual elements of a unit quaternion provide the Cayley-Klein parameters of a rotation.
This representation is a standard alternative to using Euler angles in describing the orientation
of rotating objects (Whittaker 1944).

2 Lagrangian evolution equations in quaternionic form

•(x1, t1)

6

ŵ

����χ̂a

- ŵ × χ̂a •(x2, t2) �
�
���
ŵ

XXXz

ŵ × χ̂a
���:

χ̂a

-
tracer particle trajectory

��:

Figure 1: The dotted line represents the tracer particle (•) path moving from (x1, t1) to (x2, t2).

The solid curves represent lines of constant w to which ŵ is a unit tangent vector. The orientation of

the quaternion-frame (ŵ, χ̂
a
, ŵ × χ̂

a
) is shown at the two space-time points; note that this is not the

Frenet-frame corresponding to the particle path but to lines of constant w.

Given the Lagrangian equation (1.7), define the scalar αa and the 3-vector χa as

αa = w−1(ŵ · a) , χa = w−1(ŵ × a) . (2.1)

The 3-vector a can be decomposed into parts that are parallel and perpendicular to w

a = αaw + χa × w = [αa, χa] ⊛ [0, w] , (2.2)

1The scalar entry p in the quaternion q should not be confused with pressure.
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and thus the quaternionic product is summoned in a natural manner. By definition, the growth
rate αa of the scalar magnitude w = |w| obeys

Dw

Dt
= αaw , (2.3)

while the unit tangent vector ŵ = ww−1 satisfies

Dŵ

Dt
= χa × ŵ . (2.4)

Now identify the quaternions

qa = [αa, χa] , qb = [αb, χb] , (2.5)

where αb, χb are defined as in (2.1) for αa, χa with a replaced by b. Let w = [0, w] be the pure
quaternion satisfying the Lagrangian evolution equation (1.7) with qa defined in (2.5). Then
(1.7) can automatically be re-written equivalently in the quaternion form

Dw

Dt
= [0, a] = [0, αaw + χa × w] = qa ⊛ w . (2.6)

Moreover, if a is differentiable in the Lagrangian sense as in (1.8) then it is clear that a similar
decomposition for b as that for a in (2.2) gives

D2w

Dt2
= [0, b] = [0, αbw + χb × w] = qb ⊛ w . (2.7)

Using the associativity property, compatibility of (2.7) and (2.6) implies that
(

Dqa

Dt
+ qa ⊛ qa − qb

)

⊛ w = 0 , (2.8)

which establishes a Riccati relation between qa and qb

Dqa

Dt
+ qa ⊛ qa = qb . (2.9)

From (2.9) there follows the main result of the paper:

Theorem 1 The ortho-normal quaternion-frame (ŵ, χ̂a, ŵ×χ̂a) ∈ SO(3) has Lagrangian time

derivatives expressed as

Dŵ

Dt
= Da × ŵ , (2.10)

D(ŵ × χ̂a)

Dt
= Da × (ŵ × χ̂a) , (2.11)

Dχ̂a

Dt
= Da × χ̂a , (2.12)

where the Darboux angular velocity vector Da is defined as

Da = χa +
cb

χa

ŵ , cb = ŵ · (χ̂a × χb) . (2.13)

Moreover, the Lagrangian time derivative of qb can be expressed as

Dqb

Dt
= qa ⊛ qb + Pa,b , (2.14)

Pa,b = µ1qa + λ1qb + ε1I , (2.15)

where µ1(x, t), λ1(x, t) and ε1(x, t) are arbitrary scalars (I = [1, 0]).
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Remark 1 : The frame orientation is controlled by the Darboux vector Da which itself sits in
a two-dimensional plane. In turn this is driven by cb = ŵ · (χ̂a × χb) in (2.13).

Remark 2 : The existence of the Lagrangian derivative of qb is unusual but comes at a price
through the necessary introduction of the three arbitrary scalars µ1 , λ1 and ε1.

Proof : To find an expression for the Lagrangian time derivatives of the components of the
frame (ŵ, χ̂a, ŵ × χ̂a) requires the derivative of χ̂a. To find this it is necessary to use the fact
that the 3-vector b can be expressed in this ortho-normal frame as the linear combination

w−1b = αb ŵ + cbχ̂a + db(ŵ × χ̂a) . (2.16)

where cb is defined in (2.13) and db = − (χ̂a ·χb). The 3-vector product χb = w−1(ŵ× b) yields

χb = cb(ŵ × χ̂a) − dbχ̂a . (2.17)

To find the Lagrangian time derivative of χ̂a, we use the 3-vector part of the equation for the
quaternion qa = [αa, χa] in Theorem 1

Dχa

Dt
= −2αaχa + χb , ⇒

Dχa

Dt
= −2αaχa − db , (2.18)

where χa = |χa|. Using (2.17) and (2.18) there follows

Dχ̂a

Dt
= cbχ

−1
a (ŵ × χ̂a) ,

D(ŵ × χ̂a)

Dt
= χa ŵ − cbχ

−1
a χ̂a , (2.19)

which gives equations (2.10)-(2.13).

To establish (2.14), we differentiate the orthogonality relation χb · ŵ = 0 and use the La-
grangian derivative of ŵ

Dχb

Dt
= χa × χb + s0 , where s0 = µχa + λχb . (2.20)

s0 lies in the plane perpendicular to ŵ in which χa and χb also lie and µ = µ(x, t) and λ = λ(x, t)
are arbitrary scalars. Explicitly differentiating χb = w−1(ŵ × b) gives

w−1ŵ (χa · b) + s0 = −αaχb − αbχa + w−1ŵ (χa · b) + w−1

(

ŵ ×
Db

Dt

)

, (2.21)

which can easily be manipulated into

ŵ ×

{
Db

Dt
− αb a − αa b

}

= w s0 . (2.22)

This means that
Db

Dt
= αba + αab + s0 × w + εw , (2.23)

where ε = ε(x, t) is a third unknown scalar in addition to µ and λ in (2.20). Thus the Lagrangian
derivative of αb = w−1(ŵ · b) is

Dαb

Dt
= ααb + χa · χb + ε . (2.24)

Lagrangian differential relations have now been found for χb and αb, but at the price of intro-
ducing the triplet of unknown coefficients µ, λ, and ε which are re-defined as

λ = αa + λ1 , µ = αb + µ1 , ε = −2χa · χb + µ1αa + λ1αb + ε1 . (2.25)

The new triplet has been subsumed into the tetrad defined in (2.15). Then (2.20) and (2.24)
can be written in the quaternion form (2.14). �
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3 Three further examples

This formulation can be applied to other situations, such as the stretching of fluid line-elements,
incompressible and compressible motion of Euler fluids and ideal MHD (Majda & Bertozzi 2001).

(i) The incompressible Euler equations in a rotating frame: The velocity form of Euler’s
equations for an incompressible fluid in a frame rotating at frequency Ω is

Du

Dt
= (u × 2Ω)

︸ ︷︷ ︸

Coriolis

−∇p , with div u = 0 . (3.1)

Taking the curl yields

Dq

Dt
= q · ∇u , with q = ρ−1(ω + 2Ω) and ω = curlu (3.2)

Then Ertel’s theorem becomes
[

D

Dt
, q · ∇

]

θ = 0 , or
D

Dt
(q · ∇θ) = q · ∇

(
Dθ

Dt

)

. (3.3)

A second Lagrangian time derivative of (3.2) yields the Ohkitani relation in a rotating frame.
Upon taking θ = u in Ertel’s theorem and using the motion equation gives

D2q

Dt2
=

D

Dt
(q · ∇u) = q · ∇

(
Du

Dt

)

= q · ∇
(
u × 2Ω − ∇p

)
. (3.4)

The triad of vectors (u, w, a) in this case represents (u, q, q · ∇u) with ω = curlu and
divu = 0. The particle is no longer a passive tracer but is a fluid parcel. Ertel’s Theorem and
the fluid motion equation in this case yields

D(q · ∇u)

Dt
= −Pq + q · ∇

(
u × 2Ω

)
, with P =

∂2p

∂xi∂xj

, (3.5)

where P is the Hessian matrix of the pressure. Thus (3.5) identifies a and b as a = q ·∇u and
b = −Pq + q · ∇

(
u × 2Ω

)
. The divergence-free constraint divu = 0 implies that

−∆p = ui,juj,i − div
(
u × 2Ω

)
= Tr S2 − 1

2
ω2 − div

(
u × 2Ω

)
. (3.6)

Equation (3.6) places an implicit condition upon the relation between S and P in addition to
the Riccati equation (2.8) and it will also place constraints upon the scalars λ1, µ1 and ǫ1 in
Theorem 1. This situation has been discussed at greater length in Gibbon et al. (2006) in the
absence of rotation.

(ii) Euler’s equations for a barotropic compressible fluid: The pressure of a barotropic
compressible fluid is a function of its mass density ρ, so it satisfies ∇ρ × ∇p = 0. The velocity
form of Euler’s equations for incompressible fluid motion in a frame rotating at frequency Ω is

Du

Dt
= −

1

ρ
∇p(ρ) =: −∇h(ρ) , with

Dρ

Dt
+ ρdiv u = 0 . (3.7)

Taking the curl yields

Dq

Dt
= q · ∇u , with q = ω/ρ and ω = curlu . (3.8)
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Then Ertel’s theorem takes the same form as above, and the second Lagrangian time derivative
yields the Ohkitani relation for a barotropic compressible fluid,

D2q

Dt2
=

D

Dt
(q · ∇u) = q · ∇

(
Du

Dt

)

= − q · ∇ (∇h(ρ)) , (3.9)

in terms of the Hessian of its specific enthaply, h(ρ). This has the same form as for incompressible
fluids, except the acceleration term b = − q ·∇ (∇h(ρ)) has its own dynamical equation. Thus,
the methods of Gibbon et al. (2006) also apply for barotropic fluids. For isentropic compressible
fluids, the situation is more complicated.

(iii) The equations of incompressible ideal MHD: These are

Du

Dt
= B · ∇B − ∇p , (3.10)

DB

Dt
= B · ∇u , (3.11)

together with divu = 0 and divB = 0. The pressure p in (3.10) is p = pf + 1
2B2 where pf is

the fluid pressure. Elsasser variables are defined by the combination

v± = u ± B . (3.12)

The existence of two velocities v± means that there are two material derivatives

D±

Dt
=

∂

∂t
+ v± · ∇ . (3.13)

In terms of these, (3.10) and (3.11) can be rewritten as

D±v∓

Dt
= −∇p , (3.14)

with the magnetic field B satisfying (divv± = 0)

D±B

Dt
= B · ∇v± . (3.15)

Thus we have a pair of triads (v±, B, a±) with a± = B · ∇v±, based on Moffatt’s (1985)
identification of the B-field as the important stretching element. From Gibbon (2002) and
Gibbon et al. (2006) we also have

D±a∓

Dt
= −PB , (3.16)

where b± = −PB. With two quartets (v±, B, a± , b), the results of Section 2 follow, with two
Lagrangian derivatives and two Riccati equations

D∓q±a
Dt

+ q±a ⊛ q∓a = qb . (3.17)

In consequence, MHD-quaternion-frame dynamics needs to be interpreted in terms of two sets of

ortho-normal frames
(

B̂, χ̂±, B̂ × χ̂±
)

acted on by their opposite Lagrangian time derivatives.

D∓B̂

Dt
= D

∓ × B̂ , (3.18)

D∓

Dt
(B̂ × χ̂±) = D

∓ × (B̂ × χ̂±) , (3.19)

D∓χ̂±

Dt
= D

∓ × χ̂± , (3.20)
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where the pair of Elsasser Darboux vectors D
∓ are defined as

D
∓ = χ∓ −

c∓B
χ∓

B̂ , c∓B = B̂ · [χ̂± × (χpB + α±χ∓)] . (3.21)

4 Quaternions and Rotations

The purpose of this paper has been to introduce the concept of ortho-normal quaternion-frames
that travel with Lagrangian particles. The calculations are not complicated once the formulation
has been made and show that quaternions are ideally suited to studying Lagrangian evolution
equations of all types.

It is also possible that the general formulation of (1.7) and (1.8) could be modified to include
viscous effects, particularly if experimental data becomes available: the reader is referred to the
review by Falkovich et al. (2001). One advantage of the current formulation is that it is that is
only dependent on ŵ and not ∇ŵ, although this could not be avoided if viscosity were included.

It has been mentioned already in Section 1 that quaternions are used in the aerospace and
computer graphics industries to avoid difficulties with Euler angles. Here we briefly sketch the
relation between quaternions and one of the many ways that have been used to describe rotating
bodies in the rich and long-standing literature of classical mechanics. Whittaker (1944) shows
how quaternions and the Cayley-Klein parameters (Klein 2004) are intimately related and gives
explicit formulae relating these parameters to the Euler angles.

Let q̂ = [p, q] be a unit quaternion with inverse p̂∗ = [p, −q]: this requires q̂ ⊛ q̂∗ =
[p2 + q2, 0] = [1, 0] for which we need p2 + q2 = 1. For a pure quaternion r = [0, r] there exists
a transformation from r → r′ = [0, r′]

r′ = p̂ ⊛ r ⊛ p̂∗ . (4.1)

This associative product can explicitly be written as

r′ = q̂ ⊛ r ⊛ q̂∗ = [0, (p2 − q2)r + 2p(q × r) + 2q(r · q)] . (4.2)

Choosing p = ± cos 1

2
θ and q = ± n̂ sin 1

2
θ, where n̂ is the unit normal to r, we find that

r′ = q̂ ⊛ r ⊛ q̂∗ = [0, r cos θ + (n̂ × r) sin θ] , (4.3)

where
q̂ = ±[cos 1

2
θ, n̂ sin 1

2
θ] . (4.4)

Equation (4.3) represents a rotation by an angle θ of the 3-vector r about its normal n̂. The
elements of the unit quaternion q̂ are the Cayley-Klein parameters which are related to the
Euler angles. All terms in the (4.2) are quadratic in p and q, and thus possess the well-known
± equivalence.
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